
Nghia Ngo
Big Data Capability Engineer, Intel IT

Sonja Sandeen
Big Data Product Manager, Intel IT

Darin Watson
Platform Engineer, Intel IT

Chandhu Yalla
Big Data Engineering Manager,
Intel IT

Seshu Edala
Big Data Capability Engineer, Intel IT

Sinforoso Tolentino
Platform Engineer, Intel IT

Executive Overview
Intel IT values open-source-based, big data processing using
Apache Hadoop* software. Until recently, we used the Intel®
Distribution for Apache Hadoop (IDH) software to support our
original three business intelligence (BI) big data use cases, and it
delivered results worth millions of dollars to Intel. However, we
realized we could benefit by migrating to the Cloudera Distribution
for Apache Hadoop (CDH) software.

From our original experience with Apache Hadoop software, Intel
IT identified new opportunities to reduce IT costs and extend our
BI capabilities. Forming a strategic partnership with Cloudera, Intel
IT adopted CDH, and migrated quickly from IDH. We used CDH
enterprise-grade tools to improve performance, management, and
ease of use for key Hadoop components.

This paper explains the benefits of migration for IT business groups
and these six best practices developed by the Intel IT migration team:

• Do comparative evaluation in a sandbox environment

• Define the implementation strategy

• Split the hardware environment

• Upgrade the Hadoop version

• Create a preproduction-to-production pipeline

• Rebalance the data

Careful planning, thorough testing, proactive communications, and
efficient management of scope, schedules, and skills helped enable
a successful migration.

How Intel IT Successfully Migrated to
Cloudera Apache Hadoop*

White Paper
April 2015

IT@Intel

From our original experience
with Apache Hadoop
software, Intel IT identified
new opportunities to reduce
IT costs and extend our BI
capabilities.

https://www.facebook.com/sharer/sharer.php?u=http://goo.gl/0CD17z
https://twitter.com/home?status=%23IntelIT's%20best%20practices%20for%20converting%20to%20%23Cloudera%20Distribution%20for%20%23Hadoop.%20http://goo.gl/0CD17z%20@IntelITCenter%20@IntelBiz%20%23BigData
https://www.linkedin.com/shareArticle?mini=true&url=http://goo.gl/0CD17z&title=How%20Intel%20IT%20Successfully%20Migrated%20to%20Cloudera%20Apache%20Hadoop*&summary=Intel%20IT's%20best%20practices%20for%20converting%20to%20Cloudera%20Distribution%20for%20Apache%20Hadoop.%20&source=Intel%20Corporation%20-%20IT@Intel
mailto:?subject=New IT@Intel Paper to Share&body=Intel's best practices for converting to Cloudera Distribution for Apache Hadoop. http://goo.gl/0CD17z

2 of 10IT@Intel White Paper: How Intel IT Successfully Migrated to Cloudera Apache Hadoop*

Share:

Contents
1 Executive Overview

2 Background

2 Best Practices for Migrating
from IDH to CDH

1: Find Differences with a
Comparative Evaluation in a
Sandbox Environment

2: Define Our Strategy for the
Cloudera Implementation

3: Split the Hardware Environment

4: Upgrade the Hadoop Version

5: Create a Preproduction-to-
Production Pipeline

6: Rebalance the Data

10 Conclusion

Acronyms
ACL access control list

BI business intelligence

CDH Cloudera Distribution for
Apache Hadoop

HDFS Hadoop Distributed File
System

IDH Intel Distribution for
Apache Hadoop

SLA service-level agreement

Background
Intel IT sees value in open-source–based, big data processing using Apache
Hadoop*. We used Intel’s own Hadoop distribution, Intel® Distribution for
Apache Hadoop (IDH) software.

We later determined that moving to the Cloudera Distribution for Apache
Hadoop (CDH) offers significant advantages, shown in Figure 1. CDH
contains the full distribution from the Apache Hadoop open-source project,
along with key components such as the Apache Hive* data warehouse
infrastructure and Apache Pig* data flow language. CDH also provides
enterprise-grade management and software development tools to help
developers and system administrators improve performance, management,
and ease-of-use for the unique Hadoop components such as Cloudera
Manager, Cloudera Impala, Navigator, and Sentry. The migration to CDH
also allowed us to upgrade from Hadoop 1.0 to 2.0.

Best Practices for Migrating
from IDH to CDH
A successful migration requires careful planning to cope with three
key challenges:

• Coping with Hadoop variations. An unmodified Hadoop installation
uses default configuration settings. These settings differ depending on
the variations of Hadoop. Before the migration, a comparative analysis
can highlight differences (see Best Practice 1: Find Differences with a
Comparative Evaluation in a Sandbox Environment).

• Understanding the scope of the changes. We must minimize negative
impacts from infrastructure changes on our application developers and
the customers who use those applications. To invest and participate in
such a conversion, business or customer teams expect to have the same
experience and better.

Open Source
Full distribution from
the Apache Hadoop
open-source project

Features
Desirable features,
mature feature sets,
and faster releases

Tools
Enterprise-grade
management
and software
development tools

Support
Vendor-based
enterprise-level
support

Cloudera Distribution for
Apache Hadoop Advantages

Figure 1. Cloudera Distribution for Apache Hadoop* (CDH) offers significant advantages.

https://www.facebook.com/sharer/sharer.php?u=http://goo.gl/0CD17z
https://twitter.com/home?status=%23IntelIT's%20best%20practices%20for%20converting%20to%20%23Cloudera%20Distribution%20for%20%23Hadoop.%20http://goo.gl/0CD17z%20@IntelITCenter%20@IntelBiz%20%23BigData
https://www.linkedin.com/shareArticle?mini=true&url=http://goo.gl/0CD17z&title=How%20Intel%20IT%20Successfully%20Migrated%20to%20Cloudera%20Apache%20Hadoop*&summary=Intel%20IT's%20best%20practices%20for%20converting%20to%20Cloudera%20Distribution%20for%20Apache%20Hadoop.%20&source=Intel%20Corporation%20-%20IT@Intel
mailto:?subject=New IT@Intel Paper to Share&body=Intel's best practices for converting to Cloudera Distribution for Apache Hadoop. http://goo.gl/0CD17z

3 of 10IT@Intel White Paper: How Intel IT Successfully Migrated to Cloudera Apache Hadoop*

Share:

• Completing the in-place migration in a timely manner. The migration
required us to run IDH and CDH environments in parallel. Our goal was
to operate the dual environments in tandem for the shortest possible
time and to balance all functional parts between customer projects and
platform changes. To do so, the migration team had to avoid idling racks
or servers during data transfer and testing.

To address these three challenges, the Intel IT migration team followed six
best practices.

Best Practice 1: Find Differences with a
Comparative Evaluation in a Sandbox Environment
Using a test environment, or sandbox, to do a complete evaluation of
IDH and CDH identified differences between the two environments while
providing minimal disruption to operations. The migration team was able
to study the proposed solution architecture of the various use cases to
determine critical features. We compared features and capabilities, such as
business intelligence (BI) frameworks, I/O containers, compression codecs,
security and access control lists (ACLs), container allocation limits, and so
on, isolating one configuration from another.

From the results, the team constructed a compare-and-contrast table that
identified gaps and described key differentiators, as shown in Table 1.

Table 1. Comparison of Features between Cloudera Distribution for
Apache Hadoop* (CDH) and Intel® Distribution of Apache Hadoop (IDH)
Note: The comparative study was performed from March to April 2014.

 BETTER ON CDH EQUAL BETWEEN CDH AND IDH MISSING FROM CDH

CONNECTORS Data Ingestion BETTER

DATA STORAGE Lustre* Integration MISSING

Online NoSQL BETTER

OTHER SOFTWARE AND
DRIVER INTEGRATION

Batch Processing EQUAL

Analytics SQL BETTER

Search BETTER

Machine Learning MISSING

Stream Processing BETTER

Third-party Apps EQUAL

Data Management BETTER

Workload Management EQUAL

System Management EQUAL

INFRASTRUCTURE High Availability EQUAL

Operating System EQUAL

Enterprise Access Management/
Microsoft Active Directory* Integration

EQUAL

Security MISSING

6 Best Practices for
Migration
1: Find Differences with a Comparative

Evaluation in a Sandbox Environment

2: Define Our Strategy for
the Cloudera Implementation

3: Split the Hardware Environment

4: Upgrade the Hadoop Version

5: Create a Preproduction-to-Production
Pipeline

6: Rebalance the Data

https://www.facebook.com/sharer/sharer.php?u=http://goo.gl/0CD17z
https://twitter.com/home?status=%23IntelIT's%20best%20practices%20for%20converting%20to%20%23Cloudera%20Distribution%20for%20%23Hadoop.%20http://goo.gl/0CD17z%20@IntelITCenter%20@IntelBiz%20%23BigData
https://www.linkedin.com/shareArticle?mini=true&url=http://goo.gl/0CD17z&title=How%20Intel%20IT%20Successfully%20Migrated%20to%20Cloudera%20Apache%20Hadoop*&summary=Intel%20IT's%20best%20practices%20for%20converting%20to%20Cloudera%20Distribution%20for%20Apache%20Hadoop.%20&source=Intel%20Corporation%20-%20IT@Intel
mailto:?subject=New IT@Intel Paper to Share&body=Intel's best practices for converting to Cloudera Distribution for Apache Hadoop. http://goo.gl/0CD17z

4 of 10IT@Intel White Paper: How Intel IT Successfully Migrated to Cloudera Apache Hadoop*

Share:

This table helped us to determine objectives for an orderly migration. We then
consulted with Cloudera to develop a joint roadmap, asking them to state their
commitments to implement missing or different capabilities. At this point, the
team evaluated the cost of refactoring—that is, the amount of change, testing,
and time it would take us to modify the architecture to gain the advantage of the
design recommendations for Cloudera’s distribution. We opted to make some
design and architecture changes, and we selected only mandatory components
of the distribution rather than adopting all available Hadoop components.

We made design and code changes to accommodate any feature differences.
Take the simple example of support for the lossless compression codec. Using
the less efficient CDH codec could impact both downstream code and disk,
memory, or CPU capacity. We needed enough time to test new code that uses
the CDH codec and evaluate the effects of additional resource usage – otherwise,
we would have had a new roadmap gap that Cloudera would need to fill.

Create a Sandbox
In the sandbox environment, the team made sure that everything planned
for the migration worked as we anticipated. From the existing IDH
implementation, we took a baseline for functional, performance, and data
testing benchmarks. Test data included transfer or copy methods as well as
transfer speeds. We needed this information to determine implementation
timing for the path to production. We considered differences between the
test environment and the path to production for network and hardware as
part of the calculations. The CDH implementation had to meet or beat prior
parametric benchmarks and meet nonparametric criteria.

Use Abstraction Layers to Simplify the Migration
An abstraction layer containing vanity URLs, soft links, and high-availability
proxies simplified the migration. For example, because the IDH libraries were
not in the same place as the CDH libraries, we used soft links instead of hard
coding the library locations.

Use Core Open-Source Hadoop Capabilities, and Minimize Customizations
We learned that most of the core ecosystem, such as Hive, Pig, and others,
behaved the same on the CDH implementation as it did on IDH. The code
migration had minimal or no impact on customers and their applications.
From our own experience, and from what we have seen of customers
developing their applications with Hive and Pig, these components required
no code modifications to work seamlessly on the CDH environment. Only
one project, which used Apache Mahout*, needed a small code change
because the older MapReduce* API was deprecated in favor of the newer
MapReduce API. Updating code to use the most current API makes any
future conversions much easier.

As a result of the sandbox mapping and testing, the team determined that the
roadmap was solid and had no gaps. At the least, our roadmap documented
when any gaps would be filled.

We considered differences
between the test environment

and the path to production
for network and hardware as

part of the calculations.

https://www.facebook.com/sharer/sharer.php?u=http://goo.gl/0CD17z
https://twitter.com/home?status=%23IntelIT's%20best%20practices%20for%20converting%20to%20%23Cloudera%20Distribution%20for%20%23Hadoop.%20http://goo.gl/0CD17z%20@IntelITCenter%20@IntelBiz%20%23BigData
https://www.linkedin.com/shareArticle?mini=true&url=http://goo.gl/0CD17z&title=How%20Intel%20IT%20Successfully%20Migrated%20to%20Cloudera%20Apache%20Hadoop*&summary=Intel%20IT's%20best%20practices%20for%20converting%20to%20Cloudera%20Distribution%20for%20Apache%20Hadoop.%20&source=Intel%20Corporation%20-%20IT@Intel
mailto:?subject=New IT@Intel Paper to Share&body=Intel's best practices for converting to Cloudera Distribution for Apache Hadoop. http://goo.gl/0CD17z

5 of 10IT@Intel White Paper: How Intel IT Successfully Migrated to Cloudera Apache Hadoop*

Share:

Best Practice 2: Define Our Strategy for the
Cloudera Implementation
After completing the sandbox testing, the team decided which
options and key components to include in the initial migration
and recorded the benefits and risks with choosing them. Critical
options and components included security, user interfaces, APIs,
development languages, and version compatibility. We planned to
keep the overall environment simple during migration, maintaining
stability before adding services or capabilities.

Our component and option selections validated our sandbox
findings and were incorporated into our migration strategy. We
summarize that strategy, along with benefits, potential risks, and
current status, in Table 2.

The information in the table guided the strategy to migrate the
Hive metastore service and metadata files. We needed to determine
our timeframe for migration with consideration for impact on
customers, changes to code, regression testing, and cycle run times.

One component that is easy to overlook during migration is the
Hive metastore service. Hadoop provides compute abstraction with
MapReduce API and storage abstraction with the Hadoop Distributed
File System (HDFS) API. It is easy to focus on transitioning these core
components and overlook an ancillary yet important component
like the Hive metastore service, which relies on an external database
like MySQL or Postgres and is critical for migrating data warehouse
tables from one platform to another. The core Hadoop distribution
does not provide tools to migrate the Hive metastore service data
type, security, compression, ACLs, and extended table information.
That part of the migration requires custom tooling (or scripts) to be
able to capture, replicate, and migrate over to the new platform.

During the migration, when the environment was split into two
parts, we communicated with customers about the possibility of
platform slowness. We reset the service-level agreements (SLAs) for
cycle processing and deferred any performance benchmarking
activities.

Table 2. Considerations for the Migration
from Intel® Distribution of Apache Hadoop*
(IDH) to Cloudera Distribution for Apache
Hadoop (CDH)

Scope Migrate all Internal Big Data platforms
and projects from IDH to CDH.

Strategy • Split the hardware in half, install CDH,
and run the environments in parallel
during migration.

• Align all customers to complete the
testing in CDH and cutover.

• Uninstall IDH and add the hardware
to the CDH environment to get back
to full capacity.

• Focus only on the core Hadoop*
components needed for current
customers. New features and CDH
capabilities will be adopted after
cutover and environments are
returned to full capacity.

Benefits • Adopt CDH product and vendor
support now and align to strategic
initiatives.

• Single regression testing effort of
CDH migration and Hadoop 2.x/YARN.

• Less resources now to test current
scope of use cases.

• Avoid large-scale conversion and
significant regression testing of entire
projects later.

• Take advantage of CDH features
sooner (Hue, HCatalog, Impala,
Navigator, and Sentry).

Risks
and
Impacts

• Customers: Minimal risk and impact
for testing and migration for two
production projects based on initial
and early testing. We will know more
after receiving application testing
results from Customer Insight and
the Sales and Marketing Account
Recommendation Tool.

• Platform: Potential risk if customers
delay migration to CDH so that
environments remain split, requiring
support, half capacity, and delayed
start of new Cloudera feature
evaluations.

Current
Status

• Full migration from IDH to CDH
completed in five weeks.

• Currently running CDH 5.3 in
production.

• Completed two version upgrades
since initial integration with zero
impact to customers.

https://www.facebook.com/sharer/sharer.php?u=http://goo.gl/0CD17z
https://twitter.com/home?status=%23IntelIT's%20best%20practices%20for%20converting%20to%20%23Cloudera%20Distribution%20for%20%23Hadoop.%20http://goo.gl/0CD17z%20@IntelITCenter%20@IntelBiz%20%23BigData
https://www.linkedin.com/shareArticle?mini=true&url=http://goo.gl/0CD17z&title=How%20Intel%20IT%20Successfully%20Migrated%20to%20Cloudera%20Apache%20Hadoop*&summary=Intel%20IT's%20best%20practices%20for%20converting%20to%20Cloudera%20Distribution%20for%20Apache%20Hadoop.%20&source=Intel%20Corporation%20-%20IT@Intel
mailto:?subject=New IT@Intel Paper to Share&body=Intel's best practices for converting to Cloudera Distribution for Apache Hadoop. http://goo.gl/0CD17z

6 of 10IT@Intel White Paper: How Intel IT Successfully Migrated to Cloudera Apache Hadoop*

Share:

Best Practice 3: Split the Hardware Environment
The Intel IT migration team split the existing Hadoop hardware environment
into two clusters (one for IDH and the other for CDH), completing the
construction of the two parallel systems using available components, as
shown in Figure 2.

We could not do an in-place migration for three reasons. First, we did not
want to lose HDFS because it had large amounts of data distributed over
the servers. Second, we wanted to move from Hadoop 1.0 to 2.0.

Third, IDH managed Hadoop differently from CDH; each administered
clusters with different provisioning and management tools. Thus, we could
not easily migrate in place from IDH to CDH without reprovisioning software
and configurations. We needed to set up a CDH cluster on the existing
hardware and migrate data from IDH to CDH.

Even if an in-place upgrade were possible, we would have needed to back
up terabytes of data to another cluster and move it back onto to the CDH
cluster. Since we would move data in any case, we built the new CDH cluster
on the same network as the IDH cluster and planned to transfer the data
directly from the old to the new Hadoop cluster. Parallel systems provided
the cleanest and safest approach, keeping in mind that we were working with
limited available hardware and we wanted to migrate the data only once.

This split worked out well for the following reasons:

• We had a limited amount of hardware, but we had enough additional
compute and storage capacity to support the hardware split, allowing
us to decommission nodes from IDH and build a CDH cluster sized to
support data migrations.

Figure 2. The hardware environment was split into two clusters, one for Intel® Distribution
of Apache Hadoop* and the other for Cloudera Distribution for Apache Hadoop.

Cloudera Distribution for Apache Hadoop
Intel Distribution for Apache Hadoop

HBase Master, Oozie, ZooKeeper

NameNode, Hive Metastore

ZooKeeper

JobTracker

Intel® Manager, Yum Repository

Primary NameNode, Hive Metastore

Gateway

Data Node 1

Data Node 2

Data Node 3

Data Node 4

Data Node 1, NodeManager

Data Node 2, NodeManager

Rack 1
Gateway

Secondary NameNode, Job History
Server, Resource Manager, ZooKeeper

Cloudera Manager

Backup JobTracker

Secondary NameNode,
Hive Metastore

HBase Master, ZooKeeper

Gateway Shared Storage

Data Node 1

Data Node 2

Data Node 3

Data Node 4

Data Node 1, NodeManager

Data Node 2, NodeManager

Rack 2
Data Node 1

Data Node 2

Data Node 3

Data Node 4

Data Node 1, NodeManager

Data Node 2, NodeManager

Data Node 3, NodeManager

Data Node 4, NodeManager

Data Node 5, NodeManager

Data Node 6, NodeManager

Rack 3

Split Hardware
Environment Features
• Two 10GbE 48-port switches

• 352 cores using Intel® Xeon®
processors

• Intel® Distribution of Hadoop 2.51
based on Hadoop Apache 1.x

• 22 data nodes equaling 243 TB
(3-way replication)

• High availability with true rack
awareness

• Database integration with
Teradata, Netezza, and MS SQL

• Integration with Enterprise ETL,
Active Directory/EAM, and ITSM

https://www.facebook.com/sharer/sharer.php?u=http://goo.gl/0CD17z
https://twitter.com/home?status=%23IntelIT's%20best%20practices%20for%20converting%20to%20%23Cloudera%20Distribution%20for%20%23Hadoop.%20http://goo.gl/0CD17z%20@IntelITCenter%20@IntelBiz%20%23BigData
https://www.linkedin.com/shareArticle?mini=true&url=http://goo.gl/0CD17z&title=How%20Intel%20IT%20Successfully%20Migrated%20to%20Cloudera%20Apache%20Hadoop*&summary=Intel%20IT's%20best%20practices%20for%20converting%20to%20Cloudera%20Distribution%20for%20Apache%20Hadoop.%20&source=Intel%20Corporation%20-%20IT@Intel
mailto:?subject=New IT@Intel Paper to Share&body=Intel's best practices for converting to Cloudera Distribution for Apache Hadoop. http://goo.gl/0CD17z

7 of 10IT@Intel White Paper: How Intel IT Successfully Migrated to Cloudera Apache Hadoop*

Share:

• By segregating the hardware, we remained operational during data
transfer. Our IDH resources were sufficient for the customer workload, but
we had to coordinate with projects to ensure minimal impact to existing
SLAs and batch performance expectations through the migration process.

• With matching clusters, we built on one and ported to the other.

Minimize Impact on Users
Putting IDH and CDH on the same local network enabled fast data
transfer from IDH to CDH. Allocating half of the available servers to each
environment helped enable us to complete the migration with minimal
negative impact on our customers’ applications. Hadoop’s distributed
nature contributed to this approach.

The Intel IT team offloaded the data onto a set of data nodes and then
turned off hardware that we wanted to prepare for use in the new CDH
environment. We decommissioned a few servers at a time, allowing the IDH
cluster to redistribute the data to the remaining nodes. By managing the
decommissioning process on the IDH cluster, we mitigated data loss and
monitored impact on the cluster’s workload. We added the freed-up servers
from the decommissioned IDH cluster to the CDH cluster.

Building the CDH cluster on the same network as IDH and on the same
racks enabled the data to transfer quickly from IDH to CDH. We used
implicit failover and fault tolerance of the Hadoop framework to do a
phased decommissioning and re-commissioning of cluster nodes between
the parallel systems. Using a common network infrastructure made fewer
hops between IDH and CDH nodes and leveraged 10G-bonded connections
on all data transfer hosts, reducing the data transfer time between clusters
and minimizing the impact to our existing IDH workload.

Best Practice 4: Upgrade the Hadoop Version
The move from Hadoop 1.0 to Hadoop 2.0 was simple and straightforward.
The team gained desirable features that are not included in IDH, along with
the advantages of an open-source platform. Those features include:

• High availability for the HDFS NameNode, which eliminates the previous
single point of failure in HDFS and Hadoop distribution–specific, high-
availability solutions.

• Support for file system snapshots in HDFS, which supplies native backup
and disaster recovery processes to Hadoop.

• Support for federated NameNodes, which allows for horizontal scaling of
the file system namespace.

• Support for NFS access to HDFS, which allows HDFS to be mounted as a
standard file system.

• Support for Native network encryption, which secures data while in transit.

• Performance enhancements to HDFS.

We built the new CDH
cluster on the same network

as the IDH cluster and
planned to transfer the data
directly from the old to the

new Hadoop cluster.

Hadoop 2.0 Features
• HDFS NameNode High Availability

• HDFS File System Snapshots

• Federated NameNodes

• Performance Enhancements

• YARN

https://www.facebook.com/sharer/sharer.php?u=http://goo.gl/0CD17z
https://twitter.com/home?status=%23IntelIT's%20best%20practices%20for%20converting%20to%20%23Cloudera%20Distribution%20for%20%23Hadoop.%20http://goo.gl/0CD17z%20@IntelITCenter%20@IntelBiz%20%23BigData
https://www.linkedin.com/shareArticle?mini=true&url=http://goo.gl/0CD17z&title=How%20Intel%20IT%20Successfully%20Migrated%20to%20Cloudera%20Apache%20Hadoop*&summary=Intel%20IT's%20best%20practices%20for%20converting%20to%20Cloudera%20Distribution%20for%20Apache%20Hadoop.%20&source=Intel%20Corporation%20-%20IT@Intel
mailto:?subject=New IT@Intel Paper to Share&body=Intel's best practices for converting to Cloudera Distribution for Apache Hadoop. http://goo.gl/0CD17z
http://blog.cloudera.com/blog/2012/03/high-availability-for-the-hadoop-distributed-file-system-hdfs/
http://blog.cloudera.com/blog/2013/03/how-to-set-up-a-hadoop-cluster-with-network-encryption/

8 of 10IT@Intel White Paper: How Intel IT Successfully Migrated to Cloudera Apache Hadoop*

Share:

In addition to these features, the YARN resource management system
accommodates a wider range of workloads by using one Hadoop cluster to
serve emerging frameworks other than MapReduce, such as Spark, Impala,
and HBase. This new flexibility expands the use cases for Hadoop, while
improving the efficiency of certain types of processing over data already
stored there.

Best Practice 5: Create a Preproduction-to-
Production Pipeline
After splitting the physical environment into an IDH cluster and a CDH
cluster, we then created a preproduction environment that would enable
us to validate our processes. The preproduction environment was powered
by 128 cores (using Intel® Xeon® processors) and included actual data
volumes, as shown in Figure 3. These data volumes consisted of 8 data
nodes equaling 160 TB (with 2-way replication).

Creating a preproduction environment enabled us to incrementally migrate
data to the CDH environment and to start the data migration process early
enough to allow for time for completion and a rapid transition to the new
CDH environment.

In this preproduction environment, we took the following steps:

• We assessed the time required to move from IDH to CDH.

• We aligned entitlements, control servers, and users between
the two systems without automation.

• To figure out the best methods for moving the data quickly to the
new platform, we consulted with Cloudera on a number of topics:
data compression standards, data security standards, data transfer
standards, metadata backup and restore process, replication factors,
user accessibility guidelines (via Hue), Impala memory allocation, and
resource management guidelines.

• We identified data tiers, compression codecs, and replication factors that
optimized the offline and online data transfers. Then, we communicated
any necessary changes to Intel’s developers of the STORE and LOAD
functions, so we could adequately implement the codec and HDFS
namespace changes.

• We used custom scripts for the Hive metastore service and ACL
migration. We had to capture the user management, permissions,
and partitioning schemes. We manually created the scripts offline
before migrating the data.

One week after we implemented the system on the preproduction
environment, we repeated these same tasks in the production
environment. This process helped minimize the risk and impact to
the development and bug-fix efforts that might result from different
distributions on the preproduction and production environments.

Figure 3. The preproduction environment
enabled us to validate our processes. This
environment was powered by 128 cores
(using Intel® Xeon® processors) and eight
data nodes populated with actual data
volumes.

Gateway

Gateway (Sqoop1, HiveServer2)

NameNode, Hive Metastore, Zookeeper

JobTracker

Backup JobTracker

HBase Master, Zookeeper

HBase Master, Zookeeper, Oozie Server

Secondary NameNode, Job History Server, ZooKeeper

Resource Manager, ZooKeeper

Cloudera Manager

Intel® Manager

Primary NameNode, Hive Metastore

NameNode

Data Node, NodeManager

Data Node, NodeManager

Data Node, NodeManager

Data Node, NodeManager

Data Node, NodeManager

Data Node, Region Server

Data Node, Region Server

Data Node, Region Server

Data Node, Region Server

Data Node, Region Server

Cloudera Distribution for Apache Hadoop
Intel Distribution for Apache Hadoop

Rack 1
Preproduction

https://www.facebook.com/sharer/sharer.php?u=http://goo.gl/0CD17z
https://twitter.com/home?status=%23IntelIT's%20best%20practices%20for%20converting%20to%20%23Cloudera%20Distribution%20for%20%23Hadoop.%20http://goo.gl/0CD17z%20@IntelITCenter%20@IntelBiz%20%23BigData
https://www.linkedin.com/shareArticle?mini=true&url=http://goo.gl/0CD17z&title=How%20Intel%20IT%20Successfully%20Migrated%20to%20Cloudera%20Apache%20Hadoop*&summary=Intel%20IT's%20best%20practices%20for%20converting%20to%20Cloudera%20Distribution%20for%20Apache%20Hadoop.%20&source=Intel%20Corporation%20-%20IT@Intel
mailto:?subject=New IT@Intel Paper to Share&body=Intel's best practices for converting to Cloudera Distribution for Apache Hadoop. http://goo.gl/0CD17z

9 of 10IT@Intel White Paper: How Intel IT Successfully Migrated to Cloudera Apache Hadoop*

Share:

Best Practice 6: Rebalance the Data
In the production environment, since we had two models of data-node-storage-
capacity configurations, part of the migration process required continuous
rebalancing of HDFS data across the cluster. HDFS has a utility to balance data
block placement across data nodes evenly to help ensure optimal performance.

Mixing older, low-capacity nodes with newer, high-capacity nodes caused
uneven data distribution. Low-capacity nodes filled up while data was loaded
on the CDH cluster, initiating constant rebalance to redistribute the data from
the low-capacity nodes to the high-capacity ones.

We took advantage of a rebalancing feature in CDH that can be executed from
the Cloudera Manager user interface. After each rebalance and data migration
process, the team reassessed the data distribution and rebalanced as necessary.

With limited nodes, we would have mismatched disk space capacity. Therefore,
we paused any data loads during the migration.

Finally, the team documented any middleware or kernel changes and
established the following migration best practices:

• Document the container limits for allocations compared to task trackers,
HCatalog APIs for I/O between Pig, Hive, and MapReduce. Also document
limitations of the Impala framework: UDFs, I/O formats, memory limitations,
internal and external tables. These provide Spark guidance and affect
positioning of Hive, Spark, and Impala as the data warehouse, bulk ETL,
and in-memory analytics.

• Review and understand configuration differences and values that require
altering. Some key changes that required tuning were related to resource
allocations from MapReduce 1 to MapReduce 2/YARN1.

• Stabilize the cluster with only necessary migration components prior to
enabling additional services or capabilities.

• Use high-bandwidth network backbones to support data migrations
to minimize impact of data transfer processes as well as adjusting
distributed copy bandwidth configurations.

• Verify that network firewall requirements are configured to support the
Hadoop distribution.

• Use DNS vanity names on edge or gateway nodes and key interfaces to
reduce development impact.

• Coordinate projects to monitor and help ensure minimal impact to existing
SLAs and batch performance expectations through the migration process.

• Make sure that the operating system’s tuning parameters, permission
requirements, and disk space requirements are in line with each Hadoop
distribution’s requirements.

1 MapReduce 2 is an upgrade for scheduling, resource management, and execution in Hadoop. Read the blog for
more information at blog.cloudera.com/blog/2013/11/migrating-to-mapreduce-2-on-yarn-for-users.

HDFS

MapReduce

2005-2012
Hadoop 1.0

HDFS

YARN

MapReduce Data
Processing

2013-2014
Hadoop 2.0

Data processing runs natively

Next-Generation Hadoop
Applications run natively

HDFS

YARN

Map
Reduce Tez HBase Storm Giraph Spark Open

MPI

Hadoop’s
Maturity Path

https://www.facebook.com/sharer/sharer.php?u=http://goo.gl/0CD17z
https://twitter.com/home?status=%23IntelIT's%20best%20practices%20for%20converting%20to%20%23Cloudera%20Distribution%20for%20%23Hadoop.%20http://goo.gl/0CD17z%20@IntelITCenter%20@IntelBiz%20%23BigData
https://www.linkedin.com/shareArticle?mini=true&url=http://goo.gl/0CD17z&title=How%20Intel%20IT%20Successfully%20Migrated%20to%20Cloudera%20Apache%20Hadoop*&summary=Intel%20IT's%20best%20practices%20for%20converting%20to%20Cloudera%20Distribution%20for%20Apache%20Hadoop.%20&source=Intel%20Corporation%20-%20IT@Intel
mailto:?subject=New IT@Intel Paper to Share&body=Intel's best practices for converting to Cloudera Distribution for Apache Hadoop. http://goo.gl/0CD17z
http://blog.cloudera.com/blog/2013/11/migrating-to-mapreduce-2-on-yarn-for-users/

10 of 10IT@Intel White Paper: How Intel IT Successfully Migrated to Cloudera Apache Hadoop*

THE INFORMATION PROVIDED IN THIS PAPER IS INTENDED TO BE GENERAL IN NATURE AND IS NOT SPECIFIC GUIDANCE. RECOMMENDATIONS (INCLUDING POTENTIAL
COST SAVINGS) ARE BASED UPON INTEL’S EXPERIENCE AND ARE ESTIMATES ONLY. INTEL DOES NOT GUARANTEE OR WARRANT OTHERS WILL OBTAIN SIMILAR RESULTS.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS AND SERVICES. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS AND CONDITIONS OF SALE FOR SUCH
PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL
PRODUCTS AND SERVICES INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY
PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Intel, the Intel logo, and Xeon are trademarks of Intel Corporation in the U.S. and other countries.

*Other names and brands may be claimed as the property of others.

Copyright 2015 Intel Corporation. All rights reserved. Printed in USA Please Recycle 0415/JSED/KC/PDF

Conclusion
Intel IT gained valuable experience from this migration. Although this
Hadoop migration was complex and involved multiple layers of change,
the move was successful. We experienced little dependency on the
application teams and did not encounter any significant issues associated
with the migration from one distribution to another. Careful planning,
thorough testing, proactive communications, and efficient management
of scope, schedules, and skills helped us achieve a successful migration.

When performing a Hadoop migration, consider the following tips.

Choose the migration team carefully. Technology is important but
software engineers with the right skills are essential. Migration projects
can be very complicated, so planning ahead, thoroughly evaluating
both products, and understanding the gaps are key to success. Form
a small team that comprehends the total solution: the platforms, the
code, and the ramifications for migrating data. Make sure the team
can communicate, execute, and evaluate finite itemized changes in
the lock-stepped mode necessary for a successful migration.

Gain from open-source options. Intel IT benefited from a Hadoop
distribution that has open source as its core, not proprietary software.
Staying with open-source software components helps minimize total
cost of ownership. Starting small helps keep the focus on design and
scalability for the platform.

Keep design as simple as possible. Intel IT prioritized integration of
components and capabilities according to use cases, rather than thinking
that all new features must be enabled. We maintained a balance of
scope, timelines, testing, and resources. If it is not clear what features
to enable, prioritize only those dictated by the current set of use cases.
From there, the team can build and grow feature sets as needed. For our
migration, technical, business, and modeling teams used an iterative
discovery method to understand the data. The split environments
helped simplify the data transfer. In general, keeping the design and
migration processes simple was the key to our successful migration.

For more information on Intel IT
best practices, visit www.intel.com/IT.

IT@Intel
We connect IT professionals with their
IT peers inside Intel. Our IT department
solves some of today’s most demanding
and complex technology issues, and we
want to share these lessons directly with
our fellow IT professionals in an open
peer-to-peer forum.

Our goal is simple: improve efficiency
throughout the organization and enhance
the business value of IT investments.

Follow us and join the conversation:
• Twitter
• #IntelIT
• LinkedIn
• IT Center Community

Visit us today at intel.com/IT or contact
your local Intel representative if you
would like to learn more.

Related Content
Visit intel.com/IT to find content on
related topics:

• How Intel Implemented a Low-Cost
Big Data Solution in Five Weeks paper

• Intel IT Best Practices for
Implementing Apache Hadoop*
Software paper

• Integrating Apache Hadoop* into
Intel’s Big Data Environment paper

http://www.intel.com/IT
http://www.twitter.com/@IntelITCenter
https://twitter.com/hashtag/*intelit*
https://www.linkedin.com/company/3635260
http://www.intel.com/ITCenter
http://www.intel.com/IT
http://www.intel.com/IT

	Executive Overview
	Background
	Best Practices for Migrating from IDH to CDH
	Best Practice 1: Find Differences with a Comparative Evaluation in a Sandbox Environment
	Best Practice 2: Define Our Strategy for the Cloudera Implementation
	Best Practice 3: Split the Hardware Environment
	Best Practice 4: Upgrade the Hadoop Version
	Best Practice 5: Create a Preproduction-to-
Production Pipeline
	Best Practice 6: Rebalance the Data

	Conclusion

