
The OpenStack Swift community has
released Swift 2.0, its first-ever major
revision bump milestone. Swift 2.0
is available immediately and all of
its key features and functionality are
part of the OpenStack Juno release.
The cornerstone feature: Storage
Policies, one of the most important
developments in OpenStack Swift since
the project was open-sourced.

OpenStack software is used by
hundreds of companies to build public,
private, and hybrid clouds, and Swift
object-based storage is a key element
of OpenStack. Now, the addition of
Storage Policies to Swift creates a
whole new set of usage models for
enterprise users, cloud operators, and
application developers. It enables Swift
to meet different storage requirements
for performance, durability, and
geographic location, while also
ensuring container consistency.

Building on a Solid Foundation
Storage Policies are built on an already
successful open-source storage model.
By deploying Swift, organizations can
say goodbye to traditional silos of hard-
to-manage and difficult-to-scale storage
systems. Swift works by abstracting
the storage volumes to enable the
scalability, availability, and global access
that many applications now demand.
Swift has a flexible architecture and is
able to scale in two different directions.

If the cluster needs to support
more performance or simultaneous
connections, then more proxy servers
can be added in the Access Tier. If
additional capacity is required instead,
more storage nodes can be added in
the Storage Tier (see Figure 1).

Swift follows the conventions of
the Representational State Transfer
(REST) style of network architecture,
making it consistent with the most
popular web-based applications. That
means organizations can easily read
and write their data over HTTP to a
Swift cloud storage cluster located
practically anywhere.

Removing Barriers for Users
and Providers
Swift uses a replication framework
to protect data against the failure of
any one drive. Users specify some
level of replication of objects—such
as 2x or 3x—with the copies placed
on different drives in the cluster. But
until now, the user’s entire cluster had
to adhere to one setting; there was
no way to set some nodes at 2x and
others at 3x to meet different data
protection requirements. There was
also no efficient way to make use of
differentiated hardware within the
cluster such as nodes with newer or
faster characteristics. Swift 2.0
removes these barriers by introducing
Storage Policies.

OpenStack Swift 2.0:
Storage Policies Open
Up Broader Horizons
New, intelligent features in OpenStack Swift help meet today’s storage demands

Solution Brief
OpenStack Swift
Intelligent Storage

use the containers and Storage Policies
to offer differentiated services based on
data placement and protection.

In Swift 2.0, a new daemon called the
container reconciler has been added to
Swift to handle error scenarios. Swift is
what is called an “eventually consistent”
system—it favors availability over
consistency. That means an update to
a file is available immediately on some
storage servers, but may take time to
propagate to other servers throughout
a system.

For example, a network outage might
prevent the update from getting to a
particular server. When that particular
machine came back on line, it would
not immediately have the update. Later,
after Swift realized that the server
was up and running, the update would
occur and all storage nodes would be
consistent. Swift does not support
“strongly consistent” implementations;
if it did, the initial upload would fail
and availability would suffer because
the storage system would require
consistent views of all nodes before
considering the operation successful.

Storage Policies leverage the hashing
ring technology that Swift already uses
to determine where it should store
and retrieve data within the cluster.
The hashing process works by feeding
each unique URL for an object into a
hash algorithm, producing an index of
values. Swift then uses this index to
look up which nodes that particular URL
and object should occupy in the data
structure of the ring. A ring used for this
data placement is called an object ring.

Where a Swift cluster previously
supported only one object ring, now
it can take advantage of many rings
to specify data placement. That
means a cluster can have multiple
redundancy settings: the user can
require triple replication on one ring
and reduced (double) replication on
another. Alternatively, a ring can be
used to isolate specific performance
features, such as faster storage nodes
with solid-state drives (SSDs). Rings
can also be used to assure geographic
containment of specific drives within
a large cluster to meet policy and
governance requirements. These rings

are built in the same way the original
object ring was built before Storage
Policies were introduced. When
cluster administrators want to build
a policy for low latency, for example,
they simply specify only SSDs for
that policy’s ring. When an incoming
request looks up where an object
should be placed and uses the low-
latency policy, it will query the ring
associated with the low-latency policy,
and that ring will place the object only
on SSDs.

Capitalizing on Swift Containers
Another addition to Swift 2.0 builds
on the existing Swift container
concept. Swift allows for one level of
hierarchy: a root directory and one
level of subdirectories. A container is a
subdirectory, and each container can
be associated with a different Storage
Policy. When a container is created with
a particular policy, all objects stored
in that container will then be handled
according to that policy. This capability
provides significant advantages for
Swift service providers, who can easily

Storage Storage Storage Storage Storage

2

OpenStack Swift 2.0: Storage Policies Open Up Broader Horizons

Figure 1: OpenStack Swift storage architecture

• Handle incoming requests
• Handle failures, ganged responses
• Scalable shared nothing architecture
• Consistent hashing ring distribution

• Actual object storage
• Variable replication count
• Data integrity services
• Scale-out capacity

Scalable for concurrency and/or capacity independently

Access Tier

Capacity Tier

Upload Clients Download

RESTful API, similiar to S3

Zone 1 Zone 2 Zone 3 Zone 4 Zone 5

Copy

Obj A Obj A

Copy
Copy

Proxy Proxy

Load Balancer

The “eventually consistent” nature of
Swift is relevant for Storage Policies.
Consider, for example, a scenario where
an application creates a container with
a storage policy, but a network outage
prevents some nodes from knowing
about it. Then suppose that another
application, still able to get to the
nodes that don’t know about the first
container, creates its own container
with the same name but a different
storage policy.

When the network outage is restored,
there will be two containers of the same
name in the cluster, each containing
valid data but stored in a potentially
very different manner on different
nodes. The new Swift container
reconciler is designed to search the
cluster for situations like this and
ensure that the data is stored according
to the correct storage policy.

Introducing New Swift Use Cases
New usage models enabled by Swift
Storage Policies include reduced
redundancy options, performance tiers,
and geographical tagging (see Figure 2).

Reduced Redundancy

Storage Policies can be created to
enable different replication factors to
be used in the same cluster, depending
on the type of data that needs to be
stored. For example, image thumbnails
require less durability than other data.
If the original resolution image is stored
with three copies, then a resampled
image can be stored with just two
copies—any data loss is mitigated by
the ability to re-create the thumbnail
from the original.

Used at scale, this reduced-redundancy
Storage Policy can save significant
hard drive capacity, thereby lowering
the user’s cost and helping service
providers attract and retain more cost-
sensitive customers.

Performance Tier

Performance tiering enables users to
specify storage servers with higher-
performance SSDs for their most
critical applications, while placing
less performance-dependent or less
frequently accessed data on conventional
hard drives. With more choices, the
user can more closely match the
storage configuration to the
application’s requirements.

A Year in the Making

Swift Storage Policies were in
development for a year, and are the
product of broad collaboration across
the OpenStack community—more than
three dozen developers at 15 companies
contributed. Lead contributing companies
by lines of code include SwiftStack,
Intel, Red Hat, IBM, Rackspace, HP, and
multiple independent developers. The
development process involved multiple
informal face-to-face gatherings of small
teams, lots of IRC discussion, and two
separate full-team hackathons in Austin,
Texas and Boulder, Colorado.

The new Storage Policy features are
available now from the open-source
repository and technology providers
in the OpenStack ecosystem, and are
integrated into the Juno release of the
OpenStack software.

3

OpenStack Swift 2.0: Storage Policies Open Up Broader Horizons

Storing temp data

Proxy Tier

Storing archive data

Needs low latency

Figure 2: Configuration for reduced replication and low-latency policies

Reduced replication policy

Low-latency policy

 Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as
SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those
factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated
purchases, including the performance of that product when combined with other products. For more information go to www.intel.com/performance

Intel does not control or audit the design or implementation of third party benchmark data or Web sites referenced in this document. Intel encourages all of its
customers to visit the referenced Web sites or others where similar performance benchmark data are reported and confirm whether the referenced benchmark
data are accurate and reflect performance of systems available for purchase.

This document and the information given are for the convenience of Intel’s customer base and are provided “AS IS” WITH NO WARRANTIES WHATSOEVER,
EXPRESS OR IMPLIED, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NONINFRINGEMENT
OF INTELLECTUAL PROPERTY RIGHTS. Receipt or possession of this document does not grant any license to any of the intellectual property described,
displayed, or contained herein. Intel® products are not intended for use in medical, lifesaving, life-sustaining, critical control, or safety systems, or in nuclear
facility applications.

© 2014 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.
 Copyright © 2014 Intel Corporation. All rights reserved. Intel, the Intel logo, Look Inside., and the Look Inside. logo are trademarks of Intel Corporation in the

U.S. and/or other countries.
 * Other names and brands may be claimed as the property of others. Printed in USA 1014/CM/TDA/XX/PDF Please Recycle 331194-001US

Building a new cluster entirely with
SSDs is possible for the highest
performance, but placing one or two
SSDs in each node is an economical
approach that allows the provider to
offer different service levels at different
rates. Alternatively, operators can make
sure all drives in a policy map to a
specific set of faster servers, or servers
with special capabilities.

Geotagging

Swift users can also create a container
Storage Policy that specifies a country,
a region, or a specific data center. The
user is then guaranteed that anything
written to that container will stay within
that geographical location, using only
the physical machines residing there.
Specifying location can be important
for a variety of reasons, ranging from
regulatory compliance and security

concerns to simply placing data as
close as possible to users. For example,
with geotagging, a business can create
policies to ensure branch offices have
their own data locally available for fast
lookup, while the headquarters office
has a copy of everything that is being
stored in the branches.

Meeting New Demands
With Swift 2.0 and Swift Storage
Policies, organizations can better
meet the requirements of modern,
on-demand applications. They can
specify how their data is stored in
different geographical regions, and
control replication policies that can
improve the economy of different
types of storage without compromising
availability. Look for new Storage
Policy capabilities, such as erasure
coding, coming soon.

For More Information
To learn more about Swift and the
new Swift Storage Policies, visit:
www.SwiftStack.com

SwiftStack powers enterprises with a
software-defined storage platform,
built on the OpenStack Swift object
storage engine.

http://www.intel.com/performance
http://www.SwiftStack.com

