
Executive Summary

Network functions virtualization 
(NFV) is paving the way for more 
open, flexible, and economical 
networking and communications 
equipment based on general-purpose 
computing platforms instead of 
traditional proprietary, purpose-built 
products. However, this transition 
hinges on increasing performance and 
minimizing the latencies associated 
with virtualization on general-
purpose platforms, particularly for 
interrupt-intensive, packet processing 

workloads. Designed for such 
demanding networking applications, 
platforms based on the Intel® Xeon® 
processor E5-2600 v3 product family 
incorporate several technologies that 
can significantly reduce virtualization 
latency or its impact. 

This paper reviews memory 
management features and inter-VM 
(virtual machine) communication 
schemes that can be applied to 
dramatically improve performance and 
determinism for packet processing 
workloads in virtualized environments.

 “...the industry is beginning 
to embrace NFV, as seen 

by the availability of more 
interoperable solutions using 

software-based network 
functions that are decoupled 

from hardware through 
virtualization.”

Enabling NFV to Deliver 
on its Promise
Intel® Xeon® processor E5-2600 v3 product family has special  
features to speed up packet processing in virtualized environments. 
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NFV Benefits

Service providers want the ability 
to deploy new services in hours, not 
weeks or months. But standing in the 
way are today’s networks that are 
built with proprietary, fixed-function 
appliances, requiring equipment 
vendors to be closely involved in 
new services creation. Vendors must 
typically develop, test, and integrate the 
necessary software on their equipment 
before a service provider can purchase 
and install the boxes – in all, a costly 
and time-consuming process.

In response, the industry is beginning to 
embrace NFV, as seen by the availability 
of more interoperable solutions using 
software-based network functions 
that are decoupled from hardware 
through virtualization. European 
Telecommunications Standards 
Institute’s (ETSI) NFV Industry 
Specification Group (ISG) is chartered 

with standardizing architecture, 
framework, and required protocol 
specifications in this area. Over the 
last couple of years, NFV ISG has made 
significant progress and delivered 
architectural foundational work.1,2 
A major benefit is network functions 
are no longer tied to a particular 
hardware platform, allowing them to 
be controlled centrally and deployed 
dynamically throughout the network 
as needed. The end result is new 
service deployment that can be as easy 
as uploading software to an existing 
networked server – taking just minutes 
or hours. 

To make this happen, many equipment 
vendors are moving away from using 
different architectures per major 
workload (application, control/data 
plane, and signal processing) to 
running all these workloads on Intel® 
architecture with the Data Plane 

Development Kit (DPDK). Consolidating 
these workloads onto a scalable and 
simplified platform makes it easier to 
implement multi-function and multi-
vendor solutions, such as the service 
chaining example in Figure 1. In this 
usage model, a next-generation firewall, 
service appliance, and data plane 
applications (e.g., forwarding engine) 
share packet data on a single platform.

The following sections describe 
special features that speed up packet 
processing in virtualized environments 
running on the Intel® Xeon® processor 
E5-2600 v3 product family.

NFV Challenges

In an NFV context, the virtualization 
employs a virtual machine monitor 
(or hypervisor) to create an additional 
abstraction layer between the physical 
hardware platform and operator 
network applications. Although this 
abstraction enables the benefits 
previously discussed, it also adds 
virtualization overheads occurring in 
cache, I/O, and memory, and makes it 
more difficult to share data between 
applications. As a result, developers 
face a variety of challenges, including:

•  Performance 
Virtualization inherently introduces 
overheads (e.g., VM exits) that 
lead to some level of application 
performance degradation compared 
to a non-virtualized environment. 
The primary source of overhead is the 
sheer amount of additional operating 
environment code needed for tasks 
such as memory address translations 
performed when the CPU switches 
between VMs.

•  Service Chaining  
Fundamentally, NFV simplifies the 
consolidation of virtual networking 
functions (VNFs), such as firewall, 
address translator, application 
delivery controller, and WAN 
optimizer, onto a single computing 
platform. Since each VNF performs a 

task on the network traffic, it is critical 
to have an efficient way for VNFs 
to send and receive packets from 
one another, which is called service 
chaining. Although there are a handful 
of standardization exercises in motion, 
to date, the industry has not ratified a 
standard way to chain VNFs.

•  Reliability  
CPU cache plays a pivotal role in 
delivering optimum performance in 
the modern networking system. VNFs 
must share this precious resource, 
and if any one of them is allowed to 
use more than its fair share of cache, 
the latency, jitter, and performance 
of the entire system may become 
unpredictable. This could make the 
system unsuitable for time-critical 
workloads such as processing SIP-
based voice calls.

Memory Management  
Features and Inter-VM 
Communication Schemes

The following sections describe how 
a variety of state-of-the-art Intel 
technologies can help the industry 
overcome implementation challenges 
in NFV:
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Figure 1. 
Service Chaining Example.
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A. Huge Pages

The Intel® Xeon® Processor E5-2600 
v3 product family allows a virtual 
machine monitor (VMM) to assign larger 
memory pages to VMs, which helps to 
greatly minimize overhead. Using Linux* 
huge pages through the “hugetlbfs” 
filesystem, 2 MB and 1 GB pages are 
supported, in addition to the previously 
available 4 KB page size. Support for 
huge pages was first introduced in the 
prior generation Intel® Xeon® Processor 
E5-2600 v2 product family.

Memory Management Basics 
Applications running in virtual 
machines (VM) do not have direct 
access to system memory for a number 
of reasons, one of which is to prevent 
them from accessing memory outside 
their intended domain. Instead, 
memory management units (MMUs) 
police memory requests by  
determining whether access is 
permitted and translating virtual 
addresses to host physical addresses. 
The MMU performs address 
translations for the CPU, while the 
input/output MMU (IOMMU) translates 
virtual addresses to physical addresses 
for I/O devices that send packet data to 
VMs, as shown in Figure 2.
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Figure 2. 
Simplified IOMMU Representation3

Source: wikipedia.org
2
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The IOMMU plays a large role in 
the performance of I/O-intensive 
networking applications. To greatly 
speed up memory accesses, it has a 
dedicated memory management cache, 
called the input/output translation look-
aside buffer (IOTLB). The IOTLB caches 
frequently used address translations, 
including memory locations assigned 
to VMs. When a requested address is 
not in the IOTLB, a IOTLB-miss occurs, 
which triggers a high-latency process 
called a page walk. In this case, the 
processor searches through a large 
page table to determine the physical 

address associated with the virtual 
address, thereby incurring a large delay.

Benefits from Huge Tables

The IOTLB is used by Intel® 
Virtualization Technology for Directed 
I/O (Intel® VT-d) to deliver data from 
I/O device to VMs, thus it plays a key 
role in NFV solutions. Intel VT-d now 
supports 2 MB and 1 GB pages, where 
a 2 MB page is 512 times larger than 
a 4 KB page, thus incurring up to 512 
fewer page cross penalties. Earlier Intel® 
processors only support 4 KB pages. 
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Figure 3. 
Address Structures for 4KB and 2 MB Pages.

The address structures for 4KB and 
2 MB pages are shown in Figure 3, 
illustrating 2 MB pages require one less 
memory access to get to the page data 
compares to 4 KB pages. Other benefits 
include:• With larger page sizes, a VM 
requires fewer entries in IOTLB, and 
therefore takes up less space in the 
IOTLB cache.

• In the event of an IOTLB miss, page 
walks are shorter since the page table 
has fewer address entries, thereby 
improving performance.
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Figure 5. 
Three Inter-VM Communication Schemes.

Near-Native Performance4

Figure 4 compares the L3 packet 
forwarding throughput of the DPDK 
in virtualized and native (i.e. non-
virtualized) environments with 2 MB 
page sizes achieved on Intel® Xeon® 
processor E5-2658 v2-based server 
platforms. For 256 byte packet 
size onwards, an 80G line-rate was 
achieved in both native and virtualized 
environments. For 64 and 128 bytes, 
the native performance had slightly 
higher throughput. Overall, the 
use of huge tables helps the Intel® 
platform deliver near-native packet 
forwarding performance in a virtualized 
environment.

B. Inter-VM Communication 
Schemes

Virtualization is being used to run 
software-based network functions 
in VMs on general purpose servers, 
thereby enabling a new breed of multi-
function and multi-vendor solutions, 
as shown in Figure 1. These network 
functions typically collaborate with 
each other, necessitating a low latency 

inter-VM communication scheme 
that overcomes typical performance 
overheads. For instance, standard VM 
enter and exit overhead is considerable, 
so allowing the VMM to schedule the 
correspondences between VMs can 
result in significant latency penalties.

This section discusses three inter-VM 
communication schemes and their 
associated tradeoffs.

The schemes are mapped to an Intel® 
Xeon® processor E5-2600 v3 platform 
in Figure 5.

1. SR-IOV and Layer 2 Switch Inside 
the NIC

The PCI-SIG developed the Single 
Root I/O Virtualization and Sharing 
(SR-IOV) specification to define a 
standard approach to creating and 
managing native-shared I/O devices in a 
virtualized environment. The objective 
was to enable data movement without 
VMM involvement, thus minimizing 
overhead. The specification provides 
a mechanism, called virtual function 
(VF), that is implemented in physical 

network interface cards (NICs) and 
other I/O devices for transferring data 
either between VMs, as shown in Path 
1 of Figure 5, or to/from the network, 
which is discussed in more detail in the 
following text.

SR-IOV Basics

SR-IOV enables multiple VMs, 
system images, and guests to directly 
access subset portions of physical 
I/O resources for performance data 
movement and to natively share 
underlying hardware resources. An SR-
IOV device presents physical functions 
(PFs), which are standard PCI Express* 
(PCIe*) functions. Each PF can have 
multiple VFs, which are “light-weight” 
PCIe functions with enough resources 
for major data movement, as well as 
unique requester identifiers (RIDs) 
to index the IOMMU page table for 
address translation. 

SR-IOV extends this by enabling 
multiple direct communication 
channels for each physical I/O port on 
the device. The method employed by 
SR-IOV provides unique memory space, 
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work queues, interrupts, and command 
processing for each interface exposed 
while utilizing common shared resources 
behind the host interface. The SR-IOV 
specification defines a standardized 
mechanism to create natively shared 
devices. This also provides for security 
to be maintained between VMs, as each 
memory domain is isolated.

Solution Tradeoffs

PRO: Since NICs (and not the VMM) 
are used for switching, amount of CPU 
required for implementing switching 
function is saved.

CON: The PCI bus, which connects the 
CPU to the Layer 2 switch in the NIC, 
is used to pass packets between VMs. 
This approach can stress PCI bandwidth, 
weighing in on overall system 
performance for long VM service chains.

2. Virtual Switch Support

A virtual switch (vSwitch) is logical 
switching software built into a VMM to 
network VMs together. One version is 
called DPDK Accelerated Open vSwitch, 
an open source solution expressly 
developed for inter-VM communication 
and dramatically sped up by the DPDK 
from Intel.

Open vSwitch Basics5

Open vSwitch can operate both 
as a soft switch running within the 
VMM and as the control stack for 
switching silicon. It has been ported 
to multiple virtualization platforms 
and switching chipsets. It is the default 
switch in XenServer 6.0, the Xen 
Cloud Platform*, and also supports 
Xen*, KVM*, Proxmox VE*, and 
VirtualBox*. It has been integrated into 
many virtual management systems 
including OpenStack*, openQRM*, 
OpenNebula*, and oVirt*. The kernel 
datapath is distributed with Linux*, and 
packages are available for Ubuntu*, 
Debian*, and Fedora*. Open vSwitch* 
is also supported on FreeBSD* and 
NetBSD*. The Open vSwitch release in 
development has been ported to the 
DPDK.

Virtual Switch Configuration

Path 2 in Figure 5 shows two VMs 
running on a VMM with the DPDK 
Accelerated Open vSwitch. The virtio 
Poll Mode Driver (PMD) inside the VM 
DPDK instance, coupled with user space 
vhost back-end for vSwitch, allows VMs 
to send and receive packets between 
themselves.

Solution Tradeoffs

PRO: This open source software 
solution is highly cost-effective and 
supports live VM migration.

CON: Since Open vSwitch is 
implemented in the VMM, there 
is a higher load on the VMM and 
additional inter-VM communications 
latency, as compared to SR-IOV. 
However, throughput can be 
significantly improved with the DPDK 
Accelerates Open VSwitch, which uses 
optimizations such as huge pages and 
software pre-fetch techniques. 
 
3.Shared Memory Mechanism

There are a number of mechanisms 
that enable VMs to share a portion 

of host memory, as shown in Path 3 
of Figure 5, and by doing so, deliver 
very high performance. However, 
security implications must be carefully 
evaluated since these mechanisms 
essentially provide a window into host 
processes, making them unsuitable for 
untrusted guests. Moreover, developers 
need to implement safeguards against 
data corruption (e.g., stale data), given 
the possible negative impact on the 
host and all the VMs sharing that 
particular memory.

Nahanni/IVSHMEM and KVM

The kernel-based virtual machine, 
commonly called KVM, is a full 
virtualization solution that supports 
multiple VMs running unmodified Linux 
or Windows* images on x86 hardware. 
A KVM-based memory sharing 
mechanism, called Nahanni/IVSHMEM, 
was developed by Cam Macdonell, 
Xiaodi Ke, Adam Wolfe Gordon, and 
Paul Lu from the University of Alberta.6 
It provides a user-level library for data 
movement and creates a virtual PCI 
device in QEMU that accesses memory 
on the host, as illustrated in Figure 6.
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Figure 6. 
Example Shared Memory Configuration2.

Grant Table and Xen*

Utilizing the Xen hypervisor, grant 
tables provide a generic mechanism 
to memory sharing between domains. 
Each domain has a dedicated grant 
table, which is a data structure that 
enables the domain to tell Xen what 
kind of permissions other domains 
have on its pages. Entries in the grant 
table are identified by grant references, 
which are integer indexes into the grant 
table that allow a grantee to perform 
operations on the granter’s memory.7

Solution Tradeoffs

PRO: This is a very high performance 
solution since VMs communicate over 
shared memory using mechanisms with 
negligible overhead.

CON: The VMs need to be part of a 
trusted environment and employ 
mechanisms (e.g., handshaking or 
spinlocks) to maintain data integrity and 
coherency.

Intel measured the performance 
of these schemes using standard 
benchmarking methods to generate 64-

byte traffic and measure the throughput 
through two VMs, which is shown in 
Figure 7. Shared memory mechanisms 
delivered the highest performance at 
approximately 14.2 million packets per 
second (Mpps),  which was over twice as 
fast as SR-IOV virtual/physical function 
support and twenty times faster than 
virtual switch support.4

C. Cache Monitoring and 
Allocation

The performance of most CPUs is highly 
dependent upon the availability of data 
and instructions to the execution unit. 
To lower data latency, the execution 
unit is surrounded by small pieces of 
high speed static RAM (SRAM) known 
as cache memory. This approach 
minimizes the need for the CPU to fetch 
data from high-latency system memory, 
avoiding substantial delays. 

The Intel® Xeon® Processor E5-2600 
v3 product family implements a large 
shared last level (L3) cache (Figure 8), 
which improves the performance of 
VMs running on the processor. However, 
when VMs contend for L3 cache space, 
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Schemes.
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there could be a significant drop in 
performance and determinism. To avoid 
this situation, developers using select 
processor SKUs (see Table 1) can take 
advantage of cache monitoring and 
allocation features that are described in 
the following.

Intel Cache Monitoring Technology 

This technology allows an operating 
system or virtual machine monitor 
(VMM) to determine how much L3 cache 
each software thread (application) 
is using. This is valuable information 
because it identifies which applications 
are consuming large amounts of L3 
cache and potentially degrading the 
performance of other applications. For 
example, Figure 9 shows a low priority 
application (orange) that is using a lot 
of cache, making less cache available to 
speed up a higher priority application 

(green). In the virtualized environment, 
where multiple VMs would be sharing 
this L3 cache, such “Noisy Neighbor” 
behavior can adversely affect the 
performance of other VMs, bringing 
down overall system performance.

There are several ways to take 
advantage of cache monitoring 
to optimize the overall system 
performance:

1. Move L3 cache-intensive applications 
to another socket (processor).

2. Schedule L3 cache-intensive 
applications when time-critical 
applications are not running to 
optimize the amount of shared cache 
available to each application at any 
given time.

3. Generate performance histories 
to correlate available cache space 
and application performance. 

This information can be used to 
implement cache-aware scheduling 
to ensure applications have the 
necessary cache available to meet 
performance targets.

Intel Cache Allocation Technology

After measuring L3 cache usage at 
the application level with Intel Cache 
Monitoring Technology, developers can 
use Intel Cache Allocation Technology 
to intelligently partition the L3 cache. 
This is shown in Figure 10, where a low 
priority application (orange) is assigned 
a relatively small amount of L3 cache, 
giving a higher priority application 
(green) access to more cache.

Developers can use cache allocation 
technology to increase determinism by 
prioritizing L3 cache access:

Figure 8. 
Shared L3 Cache.

1. Assign high-priority applications 
enough dedicated L3 cache to avoid 
having their data and instructions 
evicted by other applications.

2. Isolate low-priority applications by 
limiting their access to L3 cache.

3. Avoid unnecessary cache evictions 
that reduce performance.

In a study by Wind River*, Intel Cache 
Allocation Technology dramatically 
improved interrupt determinism, 
as seen in Figure 11. The left side 
shows interrupt latency without 
the technology ranged from 7 to 
10 microseconds, but with the 
technology, the right side shows the 

interrupt latency for all samples was 
approximately 7 microseconds.3 

The benefits of Intel Cache Allocation 
Technology can also be seen in 
a virtualized packet processing 
application. The sample application 
used in this example is the QoS sample 
application included in DPDK. The QoS 
sample application implements a basic 
packet processing pipeline consisting of 
a packet classification and scheduling 
stage, which results in the selection of 
a high priority or a low priority queue. 
In this 2 x 10 Gbps port configuration, 
the platform delivers 11 million packets 
per second (Mpps) of 64 byte packet 
throughput as depicted in the leftmost 
pane of Figure 12.

When an aggressor VM is introduced 
(middle pane), which is a “Noisy 
Neighbor” because it hogs substantial 
L3 cache, DPDK QoS sample application 
performance drops to 4 Mpps. The 
rightmost pane depicts application of 
cache allocation, thereby limiting the 
aggressor VM’s access to L3 cache, after 
which DPDK QoS sample application 
performance goes back to the original 
11 Mpps.4

Figure 9. 
Intel Cache Monitoring Technology 
Measures Cache Usage.
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Intel Cache Allocation Technology Improves Interrupt Latency.



Summary

Network functions virtualization 
(NFV) is having a profound impact 
on the design and deployment 
of next-generation networking 
and communications equipment. 
Fundamental to this transition 
is the ability of general-purpose 
processors to deliver high packet 

processing performance in a virtualized 
environment. Addressing this challenge, 
Intel designed Intel® Xeon® Processor 
E5-2600 v3 product family with 
technologies that can significantly 
reduce virtualization latency or its 
impact, thus making it particularly 
well-suited for demanding networking 
applications.

For more information about Intel 
solutions for NFV, visit  
http://www.intel.com/content/www/
us/en/communications/network-
infrastructure-products-and-
technologies.html.

 1 Source: ETSI, “Network Functions Virtualizaion (NFV) Architectural Framework,” http://docbox.etsi.org/ISG/NFV/Open/Published/gs_NFV002v010201p%20-%20Architectural%20Framework.pdf.

 2 Source: ETSI NFV ISG, http://docbox.etsi.org/ISG/NFV/Open/Published.

 3 Source: http://en.wikipedia.org/wiki/IOMMU.

 4 Performance tests and ratings are measured using specific computer systems and/or components and reflect the approximate performance of Intel products as measured by those tests. Any difference in 
system hardware or software design or configuration may affect actual performance. Buyers should consult other sources of information to evaluate the performance of systems or components they are 
considering purchasing. For more information on performance tests and on the performance of Intel products, visit Intel Performance Benchmark Limitations.

5  Source: http://openvswitch.org.
6  Source: Cam Macdonell, “Nahanni – a shared memory interface for KVM,” slide 6, www.linux-kvm.org/wiki/images/e/e8/0.11.Nahanni-CamMacdonell.pdf.
7  Source: http://wiki.xen.org/wiki/Grant_Table.
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Figure 12. 
Packet Processing with Intel Cache Allocation Technology.


