
Executive Summary

Network functions virtualization
(NFV) is paving the way for more
open, flexible, and economical
networking and communications
equipment based on general-purpose
computing platforms instead of
traditional proprietary, purpose-built
products. However, this transition
hinges on increasing performance and
minimizing the latencies associated
with virtualization on general-
purpose platforms, particularly for
interrupt-intensive, packet processing

workloads. Designed for such
demanding networking applications,
platforms based on the Intel® Xeon®
processor E5-2600 v3 product family
incorporate several technologies that
can significantly reduce virtualization
latency or its impact.

This paper reviews memory
management features and inter-VM
(virtual machine) communication
schemes that can be applied to
dramatically improve performance and
determinism for packet processing
workloads in virtualized environments.

 “...the industry is beginning
to embrace NFV, as seen

by the availability of more
interoperable solutions using

software-based network
functions that are decoupled

from hardware through
virtualization.”

Enabling NFV to Deliver
on its Promise
Intel® Xeon® processor E5-2600 v3 product family has special
features to speed up packet processing in virtualized environments.

Solution Brief
Packet Processing on
Intel® Architecture

2 3

Solution Brief
Packet Processing on Intel® Architecture

Solution Brief
Packet Processing on Intel® Architecture

NFV Benefits

Service providers want the ability
to deploy new services in hours, not
weeks or months. But standing in the
way are today’s networks that are
built with proprietary, fixed-function
appliances, requiring equipment
vendors to be closely involved in
new services creation. Vendors must
typically develop, test, and integrate the
necessary software on their equipment
before a service provider can purchase
and install the boxes – in all, a costly
and time-consuming process.

In response, the industry is beginning to
embrace NFV, as seen by the availability
of more interoperable solutions using
software-based network functions
that are decoupled from hardware
through virtualization. European
Telecommunications Standards
Institute’s (ETSI) NFV Industry
Specification Group (ISG) is chartered

with standardizing architecture,
framework, and required protocol
specifications in this area. Over the
last couple of years, NFV ISG has made
significant progress and delivered
architectural foundational work.1,2
A major benefit is network functions
are no longer tied to a particular
hardware platform, allowing them to
be controlled centrally and deployed
dynamically throughout the network
as needed. The end result is new
service deployment that can be as easy
as uploading software to an existing
networked server – taking just minutes
or hours.

To make this happen, many equipment
vendors are moving away from using
different architectures per major
workload (application, control/data
plane, and signal processing) to
running all these workloads on Intel®
architecture with the Data Plane

Development Kit (DPDK). Consolidating
these workloads onto a scalable and
simplified platform makes it easier to
implement multi-function and multi-
vendor solutions, such as the service
chaining example in Figure 1. In this
usage model, a next-generation firewall,
service appliance, and data plane
applications (e.g., forwarding engine)
share packet data on a single platform.

The following sections describe
special features that speed up packet
processing in virtualized environments
running on the Intel® Xeon® processor
E5-2600 v3 product family.

NFV Challenges

In an NFV context, the virtualization
employs a virtual machine monitor
(or hypervisor) to create an additional
abstraction layer between the physical
hardware platform and operator
network applications. Although this
abstraction enables the benefits
previously discussed, it also adds
virtualization overheads occurring in
cache, I/O, and memory, and makes it
more difficult to share data between
applications. As a result, developers
face a variety of challenges, including:

• Performance
Virtualization inherently introduces
overheads (e.g., VM exits) that
lead to some level of application
performance degradation compared
to a non-virtualized environment.
The primary source of overhead is the
sheer amount of additional operating
environment code needed for tasks
such as memory address translations
performed when the CPU switches
between VMs.

• Service Chaining
Fundamentally, NFV simplifies the
consolidation of virtual networking
functions (VNFs), such as firewall,
address translator, application
delivery controller, and WAN
optimizer, onto a single computing
platform. Since each VNF performs a

task on the network traffic, it is critical
to have an efficient way for VNFs
to send and receive packets from
one another, which is called service
chaining. Although there are a handful
of standardization exercises in motion,
to date, the industry has not ratified a
standard way to chain VNFs.

• Reliability
CPU cache plays a pivotal role in
delivering optimum performance in
the modern networking system. VNFs
must share this precious resource,
and if any one of them is allowed to
use more than its fair share of cache,
the latency, jitter, and performance
of the entire system may become
unpredictable. This could make the
system unsuitable for time-critical
workloads such as processing SIP-
based voice calls.

Memory Management
Features and Inter-VM
Communication Schemes

The following sections describe how
a variety of state-of-the-art Intel
technologies can help the industry
overcome implementation challenges
in NFV:

Table of Contents

Executive Summary 1

NFV Benefits . 2

NFV Challenges 3

Memory Management
Features and Inter-VM
Communication Schemes 3

 Huge Pages 3

 Inter-VM
 Communication Schemes 5

 SR-IOV and Layer 2 Switch
 Inside the NIC 5

 Virtual Switch Support 6

 Shared Memory
 Mechanisms 6

 Cache Monitoring
 and Allocation. 7

Summary . 10

Figure 1.
Service Chaining Example.

FPO
image

goes here

Traffic
Shaper VM

DPDK

Service Chain Service Chain

Next-gen
Firewall VM

DPDK

Flow Table

Intel® Virtualization Technology
for Directed I/O (VT-d)

Network Interface Card (NIC)
with Single Root IO

Virtualization (SR-IOV)

DPDK Accelerated
Open vSwitch*

IDS/IPS
VM

DPDK

Virtual Machine Monitor (VMM)

Intel® Architecture-based Platform

Packet Traffic

A. Huge Pages

The Intel® Xeon® Processor E5-2600
v3 product family allows a virtual
machine monitor (VMM) to assign larger
memory pages to VMs, which helps to
greatly minimize overhead. Using Linux*
huge pages through the “hugetlbfs”
filesystem, 2 MB and 1 GB pages are
supported, in addition to the previously
available 4 KB page size. Support for
huge pages was first introduced in the
prior generation Intel® Xeon® Processor
E5-2600 v2 product family.

Memory Management Basics
Applications running in virtual
machines (VM) do not have direct
access to system memory for a number
of reasons, one of which is to prevent
them from accessing memory outside
their intended domain. Instead,
memory management units (MMUs)
police memory requests by
determining whether access is
permitted and translating virtual
addresses to host physical addresses.
The MMU performs address
translations for the CPU, while the
input/output MMU (IOMMU) translates
virtual addresses to physical addresses
for I/O devices that send packet data to
VMs, as shown in Figure 2.

Main Memory

IOMMU

VM

Physical Addresses

CPUMMU

Device CPU

Device Addresses Virtual Addresses

Figure 2.
Simplified IOMMU Representation3

Source: wikipedia.org
2

4 5

Solution Brief
Packet Processing on Intel® Architecture

Solution Brief
Packet Processing on Intel® Architecture

The IOMMU plays a large role in
the performance of I/O-intensive
networking applications. To greatly
speed up memory accesses, it has a
dedicated memory management cache,
called the input/output translation look-
aside buffer (IOTLB). The IOTLB caches
frequently used address translations,
including memory locations assigned
to VMs. When a requested address is
not in the IOTLB, a IOTLB-miss occurs,
which triggers a high-latency process
called a page walk. In this case, the
processor searches through a large
page table to determine the physical

address associated with the virtual
address, thereby incurring a large delay.

Benefits from Huge Tables

The IOTLB is used by Intel®
Virtualization Technology for Directed
I/O (Intel® VT-d) to deliver data from
I/O device to VMs, thus it plays a key
role in NFV solutions. Intel VT-d now
supports 2 MB and 1 GB pages, where
a 2 MB page is 512 times larger than
a 4 KB page, thus incurring up to 512
fewer page cross penalties. Earlier Intel®
processors only support 4 KB pages.

Linear Address

47

Page-Directory -
Pointer Table

Page-Directory

39 38 30 29 21 20 12 11 0

PML4

PDPTE

2

PDE with PS-0

3

PML4E

CR3

1

Directory Ptr Directory Table Offset

9

9

Page Table

4-KByte Page

PTE

Physical Addr4

9

9

40

40

40

40
40

12

Four memory accesses to
get to the page data

Linear Address

47

Page-Directory -
Pointer Table

Page-Directory

39 38 30 29 21 20 0

PML4

PDPTE

2

PDE with PS-0

3

PML4E

CR3

1

Directory Ptr Directory Offset

9

9

2-MByte Page

Physical Addr

9

40

40

40

31

21

Three memory accesses to
get to the page data

One 2MB page = 512 of 4KB pages,
512 less page cross penalties

4KB Page Addressing 2 MB Page Addressing

Figure 3.
Address Structures for 4KB and 2 MB Pages.

The address structures for 4KB and
2 MB pages are shown in Figure 3,
illustrating 2 MB pages require one less
memory access to get to the page data
compares to 4 KB pages. Other benefits
include:• With larger page sizes, a VM
requires fewer entries in IOTLB, and
therefore takes up less space in the
IOTLB cache.

• In the event of an IOTLB miss, page
walks are shorter since the page table
has fewer address entries, thereby
improving performance.

L3 Forwarding, 8x10GbE, 2MB VT-d Page Tables

64
0

10,000

20,000
30,000

40,000

50,000
60,000
70,000

80,000
90,000

128 256 512 768

Packet Size (bytes)

Th
ro

ug
hp

ut
 (M

bp
s)

1024 1280 1518

VT
Native
BDG Theoretical

Virtual Machine (VM)

Intel® Architecture

DPDK

e1000 VF Virtio ivshm

Virtual Machine (VM)

DPDK

Shared
Memory
(IVSHM)

e1000 VF Virtio ivshm

3

vHost-net

User

Kernel

PF2

PFVFVF

L2 Switch 1

Intel® Virtualization Technology
for Directed I/O (VT-d)

DPDK

Intel® 82599 Ethernet Controller

Virtual Switch
Virtual Machine Monitor (VMM)

Figure 4.
L3 Forwarding Performance with
Huge Pages.

Figure 5.
Three Inter-VM Communication Schemes.

Near-Native Performance4

Figure 4 compares the L3 packet
forwarding throughput of the DPDK
in virtualized and native (i.e. non-
virtualized) environments with 2 MB
page sizes achieved on Intel® Xeon®
processor E5-2658 v2-based server
platforms. For 256 byte packet
size onwards, an 80G line-rate was
achieved in both native and virtualized
environments. For 64 and 128 bytes,
the native performance had slightly
higher throughput. Overall, the
use of huge tables helps the Intel®
platform deliver near-native packet
forwarding performance in a virtualized
environment.

B. Inter-VM Communication
Schemes

Virtualization is being used to run
software-based network functions
in VMs on general purpose servers,
thereby enabling a new breed of multi-
function and multi-vendor solutions,
as shown in Figure 1. These network
functions typically collaborate with
each other, necessitating a low latency

inter-VM communication scheme
that overcomes typical performance
overheads. For instance, standard VM
enter and exit overhead is considerable,
so allowing the VMM to schedule the
correspondences between VMs can
result in significant latency penalties.

This section discusses three inter-VM
communication schemes and their
associated tradeoffs.

The schemes are mapped to an Intel®
Xeon® processor E5-2600 v3 platform
in Figure 5.

1. SR-IOV and Layer 2 Switch Inside
the NIC

The PCI-SIG developed the Single
Root I/O Virtualization and Sharing
(SR-IOV) specification to define a
standard approach to creating and
managing native-shared I/O devices in a
virtualized environment. The objective
was to enable data movement without
VMM involvement, thus minimizing
overhead. The specification provides
a mechanism, called virtual function
(VF), that is implemented in physical

network interface cards (NICs) and
other I/O devices for transferring data
either between VMs, as shown in Path
1 of Figure 5, or to/from the network,
which is discussed in more detail in the
following text.

SR-IOV Basics

SR-IOV enables multiple VMs,
system images, and guests to directly
access subset portions of physical
I/O resources for performance data
movement and to natively share
underlying hardware resources. An SR-
IOV device presents physical functions
(PFs), which are standard PCI Express*
(PCIe*) functions. Each PF can have
multiple VFs, which are “light-weight”
PCIe functions with enough resources
for major data movement, as well as
unique requester identifiers (RIDs)
to index the IOMMU page table for
address translation.

SR-IOV extends this by enabling
multiple direct communication
channels for each physical I/O port on
the device. The method employed by
SR-IOV provides unique memory space,

6 7

Solution Brief
Packet Processing on Intel® Architecture

Solution Brief
Packet Processing on Intel® Architecture

work queues, interrupts, and command
processing for each interface exposed
while utilizing common shared resources
behind the host interface. The SR-IOV
specification defines a standardized
mechanism to create natively shared
devices. This also provides for security
to be maintained between VMs, as each
memory domain is isolated.

Solution Tradeoffs

PRO: Since NICs (and not the VMM)
are used for switching, amount of CPU
required for implementing switching
function is saved.

CON: The PCI bus, which connects the
CPU to the Layer 2 switch in the NIC,
is used to pass packets between VMs.
This approach can stress PCI bandwidth,
weighing in on overall system
performance for long VM service chains.

2. Virtual Switch Support

A virtual switch (vSwitch) is logical
switching software built into a VMM to
network VMs together. One version is
called DPDK Accelerated Open vSwitch,
an open source solution expressly
developed for inter-VM communication
and dramatically sped up by the DPDK
from Intel.

Open vSwitch Basics5

Open vSwitch can operate both
as a soft switch running within the
VMM and as the control stack for
switching silicon. It has been ported
to multiple virtualization platforms
and switching chipsets. It is the default
switch in XenServer 6.0, the Xen
Cloud Platform*, and also supports
Xen*, KVM*, Proxmox VE*, and
VirtualBox*. It has been integrated into
many virtual management systems
including OpenStack*, openQRM*,
OpenNebula*, and oVirt*. The kernel
datapath is distributed with Linux*, and
packages are available for Ubuntu*,
Debian*, and Fedora*. Open vSwitch*
is also supported on FreeBSD* and
NetBSD*. The Open vSwitch release in
development has been ported to the
DPDK.

Virtual Switch Configuration

Path 2 in Figure 5 shows two VMs
running on a VMM with the DPDK
Accelerated Open vSwitch. The virtio
Poll Mode Driver (PMD) inside the VM
DPDK instance, coupled with user space
vhost back-end for vSwitch, allows VMs
to send and receive packets between
themselves.

Solution Tradeoffs

PRO: This open source software
solution is highly cost-effective and
supports live VM migration.

CON: Since Open vSwitch is
implemented in the VMM, there
is a higher load on the VMM and
additional inter-VM communications
latency, as compared to SR-IOV.
However, throughput can be
significantly improved with the DPDK
Accelerates Open VSwitch, which uses
optimizations such as huge pages and
software pre-fetch techniques.

3.Shared Memory Mechanism

There are a number of mechanisms
that enable VMs to share a portion

of host memory, as shown in Path 3
of Figure 5, and by doing so, deliver
very high performance. However,
security implications must be carefully
evaluated since these mechanisms
essentially provide a window into host
processes, making them unsuitable for
untrusted guests. Moreover, developers
need to implement safeguards against
data corruption (e.g., stale data), given
the possible negative impact on the
host and all the VMs sharing that
particular memory.

Nahanni/IVSHMEM and KVM

The kernel-based virtual machine,
commonly called KVM, is a full
virtualization solution that supports
multiple VMs running unmodified Linux
or Windows* images on x86 hardware.
A KVM-based memory sharing
mechanism, called Nahanni/IVSHMEM,
was developed by Cam Macdonell,
Xiaodi Ke, Adam Wolfe Gordon, and
Paul Lu from the University of Alberta.6
It provides a user-level library for data
movement and creates a virtual PCI
device in QEMU that accesses memory
on the host, as illustrated in Figure 6.

Guest

Userspace

Kernel

mmap
region

PCI
Device

Guest

Userspace

Kernel

mmap
region

PCI
Device

Guest

Qemu Userspace Qemu Userspace

mmap

mmap
mmap

Qemu Userspace

Userspace

Kernel

Events Events Events

mmap
region

PCI
Device

Shared
Memory
On HostHost

Figure 6.
Example Shared Memory Configuration2.

Grant Table and Xen*

Utilizing the Xen hypervisor, grant
tables provide a generic mechanism
to memory sharing between domains.
Each domain has a dedicated grant
table, which is a data structure that
enables the domain to tell Xen what
kind of permissions other domains
have on its pages. Entries in the grant
table are identified by grant references,
which are integer indexes into the grant
table that allow a grantee to perform
operations on the granter’s memory.7

Solution Tradeoffs

PRO: This is a very high performance
solution since VMs communicate over
shared memory using mechanisms with
negligible overhead.

CON: The VMs need to be part of a
trusted environment and employ
mechanisms (e.g., handshaking or
spinlocks) to maintain data integrity and
coherency.

Intel measured the performance
of these schemes using standard
benchmarking methods to generate 64-

byte traffic and measure the throughput
through two VMs, which is shown in
Figure 7. Shared memory mechanisms
delivered the highest performance at
approximately 14.2 million packets per
second (Mpps), which was over twice as
fast as SR-IOV virtual/physical function
support and twenty times faster than
virtual switch support.4

C. Cache Monitoring and
Allocation

The performance of most CPUs is highly
dependent upon the availability of data
and instructions to the execution unit.
To lower data latency, the execution
unit is surrounded by small pieces of
high speed static RAM (SRAM) known
as cache memory. This approach
minimizes the need for the CPU to fetch
data from high-latency system memory,
avoiding substantial delays.

The Intel® Xeon® Processor E5-2600
v3 product family implements a large
shared last level (L3) cache (Figure 8),
which improves the performance of
VMs running on the processor. However,
when VMs contend for L3 cache space,

7.01. SR-IOV and Layer
2 Switch

2. Virtual Switch Support

3. Shared Memory
Mechanisms

0.7

0.0 5.0 10.0

Throughput in Million Packets Per Second (Mpps)

15.0

14.2

Figure 7.
Performance of Three
Inter-VM Communication
Schemes.

8 9

Solution Brief
Packet Processing on Intel® Architecture

Solution Brief
Packet Processing on Intel® Architecture

there could be a significant drop in
performance and determinism. To avoid
this situation, developers using select
processor SKUs (see Table 1) can take
advantage of cache monitoring and
allocation features that are described in
the following.

Intel Cache Monitoring Technology

This technology allows an operating
system or virtual machine monitor
(VMM) to determine how much L3 cache
each software thread (application)
is using. This is valuable information
because it identifies which applications
are consuming large amounts of L3
cache and potentially degrading the
performance of other applications. For
example, Figure 9 shows a low priority
application (orange) that is using a lot
of cache, making less cache available to
speed up a higher priority application

(green). In the virtualized environment,
where multiple VMs would be sharing
this L3 cache, such “Noisy Neighbor”
behavior can adversely affect the
performance of other VMs, bringing
down overall system performance.

There are several ways to take
advantage of cache monitoring
to optimize the overall system
performance:

1. Move L3 cache-intensive applications
to another socket (processor).

2. Schedule L3 cache-intensive
applications when time-critical
applications are not running to
optimize the amount of shared cache
available to each application at any
given time.

3. Generate performance histories
to correlate available cache space
and application performance.

This information can be used to
implement cache-aware scheduling
to ensure applications have the
necessary cache available to meet
performance targets.

Intel Cache Allocation Technology

After measuring L3 cache usage at
the application level with Intel Cache
Monitoring Technology, developers can
use Intel Cache Allocation Technology
to intelligently partition the L3 cache.
This is shown in Figure 10, where a low
priority application (orange) is assigned
a relatively small amount of L3 cache,
giving a higher priority application
(green) access to more cache.

Developers can use cache allocation
technology to increase determinism by
prioritizing L3 cache access:

Figure 8.
Shared L3 Cache.

1. Assign high-priority applications
enough dedicated L3 cache to avoid
having their data and instructions
evicted by other applications.

2. Isolate low-priority applications by
limiting their access to L3 cache.

3. Avoid unnecessary cache evictions
that reduce performance.

In a study by Wind River*, Intel Cache
Allocation Technology dramatically
improved interrupt determinism,
as seen in Figure 11. The left side
shows interrupt latency without
the technology ranged from 7 to
10 microseconds, but with the
technology, the right side shows the

interrupt latency for all samples was
approximately 7 microseconds.3

The benefits of Intel Cache Allocation
Technology can also be seen in
a virtualized packet processing
application. The sample application
used in this example is the QoS sample
application included in DPDK. The QoS
sample application implements a basic
packet processing pipeline consisting of
a packet classification and scheduling
stage, which results in the selection of
a high priority or a low priority queue.
In this 2 x 10 Gbps port configuration,
the platform delivers 11 million packets
per second (Mpps) of 64 byte packet
throughput as depicted in the leftmost
pane of Figure 12.

When an aggressor VM is introduced
(middle pane), which is a “Noisy
Neighbor” because it hogs substantial
L3 cache, DPDK QoS sample application
performance drops to 4 Mpps. The
rightmost pane depicts application of
cache allocation, thereby limiting the
aggressor VM’s access to L3 cache, after
which DPDK QoS sample application
performance goes back to the original
11 Mpps.4

Figure 9.
Intel Cache Monitoring Technology
Measures Cache Usage.

Core 0

L1 Cache L1 Cache L1 Cache L1 Cache

L2 Cache L2 Cache L2 Cache L2 Cache

Core 1 Core 2

Inclusive Shared L3 Cache

Core 3
Core 0

App

Core 1

.
App

Core n

Last Level Cache

Intel Cache Monitoring Technology

All Intel® Xeon® processor E5-2600
v3 product family members

· Intel® Xeon® processor E5-2658 v3
· Intel® Xeon® processor E5-2648L v3
· Intel® Xeon® processor E5-2628L v3
· Intel® Xeon® processor E5-2618L v3
· Intel® Xeon® processor E5-2608L v3

Intel Cache Allocation Technology

Table 1.
Shared v Cache.

Core 0

App

Core 1

.
App

Core n

Last Level Cache

Figure 10.
Intel Cache Allocation Technology Assigns
Cache Partitions to Applications.

Interrupt Latency

7
0

20

40
60

80

100

8 9 10 11
Interrupt Latency (us)

Pe
rc

en
t D

is
tr

ib
ut

io
n

No Cache
Allocation

7
0

20

40
60

80

100

8 9 10 11
Interrupt Latency (us)

Pe
rc

en
t D

is
tr

ib
ut

io
n

With Cache
Allocation

Figure 11.
Intel Cache Allocation Technology Improves Interrupt Latency.

Summary

Network functions virtualization
(NFV) is having a profound impact
on the design and deployment
of next-generation networking
and communications equipment.
Fundamental to this transition
is the ability of general-purpose
processors to deliver high packet

processing performance in a virtualized
environment. Addressing this challenge,
Intel designed Intel® Xeon® Processor
E5-2600 v3 product family with
technologies that can significantly
reduce virtualization latency or its
impact, thus making it particularly
well-suited for demanding networking
applications.

For more information about Intel
solutions for NFV, visit
http://www.intel.com/content/www/
us/en/communications/network-
infrastructure-products-and-
technologies.html.

 1 Source: ETSI, “Network Functions Virtualizaion (NFV) Architectural Framework,” http://docbox.etsi.org/ISG/NFV/Open/Published/gs_NFV002v010201p%20-%20Architectural%20Framework.pdf.

 2 Source: ETSI NFV ISG, http://docbox.etsi.org/ISG/NFV/Open/Published.

 3 Source: http://en.wikipedia.org/wiki/IOMMU.

 4 Performance tests and ratings are measured using specific computer systems and/or components and reflect the approximate performance of Intel products as measured by those tests. Any difference in
system hardware or software design or configuration may affect actual performance. Buyers should consult other sources of information to evaluate the performance of systems or components they are
considering purchasing. For more information on performance tests and on the performance of Intel products, visit Intel Performance Benchmark Limitations.

5 Source: http://openvswitch.org.
6 Source: Cam Macdonell, “Nahanni – a shared memory interface for KVM,” slide 6, www.linux-kvm.org/wiki/images/e/e8/0.11.Nahanni-CamMacdonell.pdf.
7 Source: http://wiki.xen.org/wiki/Grant_Table.

 INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE,
TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS AND CONDITIONS OF SALE FOR SUCH
PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL
PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT,
COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR
INTENDED FOR ANY APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR DEATH
MAY OCCUR.

 Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of
any features or instructions marked “reserved” or “undefined.” Intel reserves these for future definition and shall have no responsibility whatsoever for
conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with this information.

 The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current
characterized errata are available on request. Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.
Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-548-4725, or by
visiting Intel’s Web site at www.intel.com.

 Copyright © 2015 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.
 * Other names and brands may be claimed as the property of others. Printed in USA 0315/PK/ICMC/SW/PDF Please Recycle 332135-001US

Solution Brief
Packet Processing on Intel® Architecture

CPU L3 CACHE

Guest VM
DPDK_QoS

Virtual Machine Monitor

11MPPS
UNCONTESTED L3 CACHE

CPU L3 CACHE

Guest VM
DPDK_QoS

Noisy
Neighbor VM

Guest VM
DPDK_QoS

Noisy
Neighbor VM

Virtual Machine Monitor

4MPPS

CPU L3 CACHE

Virtual Machine Monitor

11MPPS
CAT MANAGED

NOISY NEIGHBOR

With Intel Cache
Allocation Technology

UNMANAGED NOISY
NEIGHBOR

DPDK QOS SAMPLE APPLICATION PERFORMANCE
Figure 12.
Packet Processing with Intel Cache Allocation Technology.

